Login lub e-mail Hasło   

Algorytmy sortujące - sortowanie poprzez kopcowanie

Odnośnik do oryginalnej publikacji: http://www.i-lo.tarnow.pl/edu/inf/alg/al(...)ex.html
Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice . W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami . Jeśli za punkt odniesie...
Wyświetlenia: 6.088 Zamieszczono 18/10/2006

Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za punkt odniesienia weźmiemy element d[i] (i = 2,3,..,n-1; n - liczba elementów w tablicy), to elementem poprzedzającym go będzie element o mniejszym o 1 indeksie, czyli d[i - 1]. Elementem następnym będzie element o indeksie o 1 większym, czyli d[i + 1]. Jest to tzw. hierarchia liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

Pierwszy element d[1] nie posiada poprzednika (ang. predecessor - elementu poprzedzającego w ciągu). Ostatni element d[n] nie posiada następnika (ang. successor - elementu następnego w ciągu). Wszystkie pozostałe elementy posiadają poprzedniki i następniki.

Drzewo binarne jest hierarchiczną strukturą danych, którego elementy będziemy nazywali węzłami (ang. node) lub wierzchołkami. W hierarchii liniowej każdy element może posiadać co najwyżej jeden następnik. W drzewie binarnym każdy węzeł może posiadać dwa następniki (stąd pochodzi nazwa drzewa - binarny = dwójkowy, zawierający dwa elementy), które nazwiemy potomkami. dziećmi lub węzłami potomnymi danego węzła (ang. child node).

Węzły są połączone krawędziami symbolizującymi następstwo kolejnych elementów w strukturze drzewa binarnego. Według rysunku po prawej stronie węzeł A posiada dwa węzły potomne: B i C. Węzeł B nosi nazwę lewego potomka (ang. left child node), a węzeł C nosi nazwę prawego potomka (ang. right child node).

Z kolei węzeł B posiada węzły potomne D i E, a węzeł C ma węzły potomne F i G. Jeśli dany węzeł nie posiada dalszych węzłów potomnych, to jest w strukturze drzewa binarnego węzłem terminalnym. Taki węzeł nosi nazwę liścia (ang. leaf node). Na naszym rysunku liściami są węzły terminalne D, E, F i G.

Rodzicem, przodkiem (ang. parent node) lub węzłem nadrzędnym będziemy nazywać węzeł leżący na wyższym poziomie hierarchii drzewa binarnego. Dla węzłów B I C węzłem nadrzędnym jest węzeł A. Podobnie dla węzłów D i E węzłem nadrzędnym będzie węzeł B, a dla F i G będzie to węzeł C.

Węzeł nie posiadający rodzica nazywamy korzeniem drzewa binarnego (ang. root node). W naszym przykładzie korzeniem jest węzeł A. Każde drzewo binarne, które zawiera węzły posiada dokładnie jeden korzeń.

Jeśli chcemy przetwarzać za pomocą komputera struktury drzew binarnych, to musimy zastanowić się nad sposobem reprezentacji takich struktur w pamięci. Najprostszym rozwiązaniem jest zastosowanie zwykłej tablicy n elementowej. Każdy element tej tablicy będzie reprezentował jeden węzeł drzewa binarnego. Pozostaje nam jedynie określenie związku pomiędzy indeksami elementów w tablicy a położeniem tych elementów w strukturze drzewa binarnego.

Zastosujmy następujące odwzorowanie:

  • Element d[1] będzie zawsze korzeniem drzewa.
  • i-ty poziom drzewa binarnego wymaga 2i-1 węzłów. Będziemy je kolejno pobierać z tablicy.

Otrzymamy w ten sposób następujące odwzorowanie elementów tablicy w drzewo binarne:

Dla węzła k-tego wyprowadzamy następujące wzory:

węzły potomne mają indeksy równe:
2k - lewy potomek
2k+1 -
prawy potomek

węzeł nadrzędny ma indeks równy [k / 2] (dzielenie całkowitoliczbowe)

 

Sprawdź, iż podane wzory są również spełnione w drzewach binarnych o większych rozmiarach niż prezentuje nasz przykład (pomocna może być kartka papieru).

Skonstruować drzewo binarne z elementów zbioru {7 5 9 2 4 6 1}

 

Operacja Opis

7 5 9 2 4 6 1
Konstrukcję drzewa binarnego rozpoczynamy od korzenia, który jest pierwszym elementem zbioru, czyli liczbą 7.

7 5 9 2 4 6 1
Do korzenia dołączamy dwa węzły potomne, które leżą obok w zbiorze. Są to dwa kolejne elementy, 5 i 9.

7 5 9 2 4 6 1
Do lewego węzła potomnego (5) dołączamy jego węzły potomne. Są to kolejne liczby w zbiorze, czyli 2 i 4.

7 5 9 2 4 6 1
Pozostaje nam dołączyć do prawego węzła ostatnie dwa elementy zbioru, czyli liczby 6 i 1. Drzewo jest kompletne.

Umówmy się na potrzeby tego artykułu, iż binarne drzewo jest zrównoważone i uporządkowane, jeśli na wszystkich poziomach za wyjątkiem ostatniego posiada maksymalną liczbę węzłów, a na poziomie ostatnim węzły są ułożone kolejno od lewej strony. Innymi słowy, jeśli ostatni węzeł drzewa binarnego posiada numer i-ty, to drzewo zawiera wszystkie węzły od numeru 1 do i.

Warunek ten gwarantuje nam, iż każdy element tablicy będzie reprezentował pewien węzeł w drzewie binarnym - czyli w tej strukturze nie wystąpią dziury.

Drzewo po lewej stronie nie posiada węzła d[7]. Ale posiada wszystkie węzły od d[1] do d[6], jest zatem zrównoważone i uporządkowane. Można je bez problemu przedstawić za pomocą tablicy elementów od d[1] do d[6].

Drzewo po prawej stronie nie posiada węzła d[5]. Takiego drzewa nie przedstawimy poprawnie za pomocą tablicy elementów od d[1] do d[7], ponieważ nie mamy możliwości zaznaczenia (bez dodatkowych zabiegów), iż element d[5] nie należy do struktury drzewa. Zatem nie będzie to uporządkowane i zrównoważone drzewo binarne.

W uporządkowanych i zrównoważonych drzewach binarnych bardzo prosto można sprawdzić, czy k-ty węzeł jest liściem. Będzie tak, jeśli węzeł ten nie posiada węzłów potomnych. Zatem, jeśli drzewo binarne składa się z n węzłów, to wystarczy sprawdzić, czy 2k > n. Jeśli tak, węzeł jest liściem. Jeśli nie, węzeł posiada potomka o indeksie 2k, zatem nie może być liściem.

Ścieżką nazwiemy ciąg węzłów drzewa binarnego spełniających warunek, iż każdy węzeł poprzedni jest rodzicem węzła następnego. Jeśli ścieżka składa się z k węzłów, to długością ścieżki jest liczba k - 1.

Na powyższym rysunku zaznaczona została ścieżka biegnąca poprzez węzły {d[1], d[3], d[6], d[13]}. Ścieżka ta zawiera cztery węzły, ma zatem długość równą 3.

Wysokością drzewa binarnego nazwiemy długość najdłuższej ścieżki od korzenia do liścia. W powyższym przykładzie najdłuższa taka ścieżka ma długość 3, zatem zaprezentowane drzewo binarne ma wysokość równą 3.

Dla n węzłów zrównoważone drzewo binarne ma wysokość równą:

h = [log2n]

węzeł  (ang. node)  -  element drzewa binarnego
rodzic, węzeł nadrzędny, przodek  (ang, parent node)  - węzeł leżący o 1 poziom wyżej w hierarchii
dziecko, potomek, węzeł potomny  (ang. child node)  - węzeł leżący o 1 poziom niżej w hierarchii, dla którego bieżący węzeł jest rodzicem.
korzeń drzewa  (ang. root node)  - pierwszy węzeł na najwyższym poziomie hierarchii, który nie posiada rodzica
liść, węzeł terminalny  (ang. leaf node)  - węzeł nie posiadający węzłów potomnych
ścieżka  (ang. path)  - droga na drzewie binarnym wiodąca poprzez poszczególne wierzchołki


DLA
GENIUSZA

  1. Zaprojektuj algorytm, który wyznacza ścieżkę od korzenia drzewa binarnego do wskazanego węzła. Na podstawie algorytmu napisz odpowiedni program w wybranym języku programowania.

  2. Wykorzystując zaprojektowany w zadaniu 1 algorytm napisz program, który dla zadanego drzewa binarnego wyznacza wszystkie ścieżki od korzenia do poszczególnych liści.

  3. Zaprojektuj algorytm, który sprawdza, czy istnieje ścieżka pomiędzy dwoma węzłami drzewa binarnego. Na podstawie tego algorytmu napisz program w wybranym języku programowania.

 Dokument ten rozpowszechniany jest zgodnie z zasadami licencji
GNU Free Documentation License.

Podobne artykuły


49
komentarze: 18 | wyświetlenia: 64976
37
komentarze: 9 | wyświetlenia: 28519
50
komentarze: 27 | wyświetlenia: 63526
41
komentarze: 19 | wyświetlenia: 32981
32
komentarze: 12 | wyświetlenia: 26675
11
komentarze: 2 | wyświetlenia: 33152
11
komentarze: 1 | wyświetlenia: 86405
9
komentarze: 2 | wyświetlenia: 6132
19
komentarze: 10 | wyświetlenia: 21324
18
komentarze: 11 | wyświetlenia: 9267
21
komentarze: 9 | wyświetlenia: 12473
17
komentarze: 10 | wyświetlenia: 10596
7
komentarze: 1 | wyświetlenia: 34648
 
Autor
Artykuł




Brak wiadomości


Dodaj swoją opinię
W trosce o jakość komentarzy wymagamy od użytkowników, aby zalogowali się przed dodaniem komentarza. Jeżeli nie posiadasz jeszcze swojego konta, zarejestruj się. To tylko chwila, a uzyskasz dostęp do dodatkowych możliwości!
 

© 2005-2018 grupa EIOBA. Wrocław, Polska