JustPaste.it

Pierwsze trzy minuty

Co działo się w czasie pierwszych trzech minut od powstania naszego wszechświata? Naukowcy głowią się nad tym problemem od dość dawna. I chociaż nam wydaje się, że w tym czasie można zaparzyć co najwyżej herbatę, okazuje się że miało miejsce wtedy zdumiewająco wiele zjawisk.

Co działo się w czasie pierwszych trzech minut od powstania naszego wszechświata? Naukowcy głowią się nad tym problemem od dość dawna. I chociaż nam wydaje się, że w tym czasie można zaparzyć co najwyżej herbatę, okazuje się że miało miejsce wtedy zdumiewająco wiele zjawisk.

 

Przed czasem, określanym jako "czas Plancka" (10-43 sekundy), wszystkie cztery fundamentalne oddziaływania (jądrowe silne, elektromagnetyczne, jądrowe słabe i grawitacyjne) były zunifikowane w jedno - chociaż wówczas siły oddziaływania elektromagnetycznego i słabego jądrowego występowały w postaci tzw. oddziaływania 'elektrosłabego'). Cała materia, energia, przestrzeń i czas, tworząc jedność, uległy eksplozji z pojedynczego punktu - osobliwości. I tylko tyle wiemy na temat tego okresu.
Nie oznacza to oczywiście tego, że wiemy więcej na temat następnych chwil powstawania wszechświata, jednak nie ma obecnie spójnego modelu obrazującego i tłumaczącego ówczesne wydarzenia w tak ekstremalnych warunkach.

W momencie przypadającym na 10-43 sekundy, nastąpiło oddzielenie grawitacji od pozostałych trzech sił, które jeszcze wtedy ulegały tzw. wielkiej unifikacji. Na czas ok. 10-36 sekundy współczesne modele przewidziały separacje silnego oddziaływania jądrowego. W roku 1970 Sheldon Glashow i Howard Georgi zaproponowali stwierdzenie, że zunifikowane trzy oddziaływania (silne, słabe i elektromagnetyczne) mają energię rzędu 1014 GeV. Jeżeli dostosować koncepcję energii cieplnej do ówczesnych warunków, obliczona temperatura każdej cząstki o średniej energii 1014 GeV będzie wynosić 1027 K. Chociaż w tym czasie silne oddziaływanie jądrowe oddzieliło się od grawitacyjnego i elektrosłabego, jednak jego poziom energetyczny był wciąż zbyt wysoki aby utrzymywać protony i neutrony razem - dlatego taki wszechświat był "skwierczącą zupą kwarkową".

Między 10-36 a 10-32 sekundy trwała tzw. era inflacyjna. W tak krótkim czasie wszechświat powiększył się co najmniej 1020 razy w porównaniu z rozmiarem wcześniejszym. Hipoteza wszechświata inflacyjnego jest w stanie poradzić sobie nawet z problemem horyzontu zdarzeń.
Po zakończeniu tego etapu, wszechświat składał się prawie wyłącznie z energii w postaci fotonów i z takich cząstek elementarnych, które nie mogły istnieć jako związane ze sobą stabilniejsze cząstki - spowodowane to było ogromną gęstością energii. Mogły istnieć jako mieszanina kwarków i antykwarków pływających w opisanej wyżej "plazmie kwarkowej". Okres ten trwał między 10-32 a 10-5 sekundy. W tym czasie rozdzieliło się również oddziaływanie elektrosłabe (na elektromagnetyczne i słabe jądrowe), co zakończyło erę unifikacji fundamentalnych sił (przypada to na czas 10-12 sekundy).

Kiedy rozszerzający się pierwotny wszechświat ochłodził się do temperatury 1013 K (10-6 sekundy), wartość energii obniżyła się do 1 GeV i kwarki mogły już łączyć się formując pojedyncze protony i neutrony (oraz przypuszczalnie inne bariony). W tym czasie istniały już wszystkie cząstki, które obecnie występują we wszechświecie, mimo iż temperatura była nadal zbyt wysoka aby umożliwić powstawanie jąder atomowych. Od tego momentu możemy już zacząć mówić o standardowym modelu Wielkiego Wybuchu.


W 0.02 sekundy wszechświat składa się prawie wyłącznie z fotonów, elektrony i pozytony tworzą ze sobą pary i ulegają anihilacji. Produkcja par elektron-pozyton dostarcza maksymalnej energii 1 MeV, stąd energia cieplna wynosiła 8.6 MeV (temperatura 1011 K a gęstość 4×109 *).
Różnica energii między neutronem i protonem wynosiła 1.29 MeV, dlatego też protony mogły się swobodnie zamieniać w neutrony w takiej temperaturze, jaka wówczas panowała. Oszacowano, na podstawie wartości gęstości, że na liczbę 109 fotonów przypada tylko jeden barion. Odkąd wprowadzono zasadę zachowania liczby barionowej, wnioskujemy, że stosunek fotonów do barionów jest stały nawet mimo procesu ekspansji wszechświata..

W 0.11 sekundy gęstość materii wynosiła 30 000 000 (temperatura 3×1010 K, energia 2.6 MeV). Wolne neutrony zanikały, tworząc protony - nastąpiła nadwyżka protonów nad neutronami (w stosunku 68% do 38%).

W 1.09 sekundy wszechświat zaczyna być przeźroczysty dla neutrin. Przypuszcza się, że obecnie kosmos jest wypełniony promieniowaniem elektromagnetycznym, które jest źródłem wyłaniających się wtedy neutrin. Jednak rozszerzająca się materia nadal nie przepuszcza fal elektromagnetycznych (temperatura rzędu 1010 K, energia równa 860 KeV, stosunek liczby protonów do neutronów: 76% do 24%).

W kolejnym etapie (13.8 sekundy) liczba elektronów i pozytonów gwałtownie maleje. Istnieje już możliwość formowania się jąder atomowych, takich jak np. helu-4, jednak nie tworzą się one trwale ze względu na niestabilność w temperaturze 3×109 K (energia wynosiła 260 MeV).

W czasie 3 min. 2 sekund od Wielkiego Wybuchu głównymi składnikami materii wszechświata są fotony i neutrina. Elektrony i pozytony prawie wyginęły. Przewaga protonów nad neutronami jest ponad sześciokrotna (86% protonów, 14% neutronów), mimo to reprezentują niewielki ułamek całkowitej zgromadzonej energii (86 KeV), temperatura wynosi 109 K.

Dochodzimy do czasu 3 min. 46 sekund kiedy to deuter jest już stabilny. Wszystkie neutrony przemieniają się najpierw w deuter a potem w jądra helu (cząstki alfa). W tym czasie hel stanowi już 26% masy całego ówczesnego wszechświata.
Gdyby proces ekspansji przebiegał wolniej, prawie wszystkie neutrony mogłyby zaniknąć i nie utworzyłyby się żadne atomy (temperatura wszechświata wynosiła 0.9×109 K, energia 78 KeV).

Około 34 minuty istnienia wszechświata zatrzymały się przemiany jądrowe, trwała natomiast jego ekspansja i dalsze ochładzanie się.

700 000 lat po Wielkim Wybuchu wszechświat był na tyle chłodny aby powstawać mogły trwałe atomy wodoru i helu. Brak zjonizowanych gazów sprawił, że wszechświat stał się, po raz pierwszy, przeźroczysty dla promieniowania świetlnego. Temperatura wynosiła 3000 K, natomiast energia równa była 0.26 eV.



(*) gęstość równa 1 odpowiada gęstości wody

 

Źródło: http://www.joannad.nazwa.pl/universe/index2.php?file=1&sec=bb