Login lub e-mail Hasło   

Funkcje odwracalne zbiorów dobrego porządku obliczane z funkcji równolicznych.

Funkcja odwrotna i odwracalna, względem funkcji równolicznej z której została obliczona będzie funkcją o różnych wartościach.
Wyświetlenia: 988 Zamieszczono 19/07/2013

 Proszę korzystać z aktualizacji danych.
Klip Video dotyczący omówienia tematu funkcji odwrotnej, przeliczalnej i odwracalnej jest na
http://www.youtube.com/watch?v=onXWclljWX4

Liczba porządkowa pliku dla działań zbiorów równolicznych 15............................................................................................................................................................................

 
Funkcje odwracalne  zbioru przeliczalnego liczbowego układu trójkowego obliczane z funkcji równolicznych Metoda opisowa.
Należących do zbiorów dobrego porządku.
Odwracalność funkcji równolicznej dotyczy tylko jednego przeliczenia a dowolny ciąg przeliczeń funkcji odwracalnej do funkcji przeliczalnej f : ( )   [ np.: wielokrotnego w dowolnych kierunkach ]
Dlatego pojęcia nakładają się na siebie
Rewers  (łac. reversus = obrócony, odwrócony) odwrotna, tylna strona przedmiotu, np. medalu, monety, rysunku, obrazu, tkaniny, skrzydła ołtarzowego.
 ,,Funkcja odwrotna, jeżeli funkcja y = f (x) określona na przedziale (a, b) odwzorowuje go na przedział (c, d) i f (x) jest monotoniczna w całym przedziale, to istnieje funkcja odwrotna (do f (x)) dla której x = g (y).``
Funkcje odwracalne należą do zbioru przeliczalnego. {<1/2>,<1/3>, ..., <8,9>}
Przedziały liczbowe, liczbowego układu trójkowego zbioru przeliczalnego. ..............{{{<1/2>}), ({<1/3>, <1/4>,...,<2/9>}), ({3,4>, <3,5>,...,<8,9> }}}
Dla omówienia zagadnienia przedziałom liczbowym przypisano wartości liczbowe..... {{{< 1 >}), ({<....................................2 ........................> }}}
Funkcja równoliczna obliczona  z funkcji różnowartościowej jest odwrotna, odwracalna i przeliczalna.
Kolory przypisane funkcją cyklicznym w 2013r. [ f: (x), f: (y), f :(z)]    f :{X} , f : {Y}  
f: j układu trójkowego  < x, y, z > = << x1, x2, x3>), (< y1, y2, y3>), (< z1, z2, z3>>
 
1. Funkcja zbudowana z trzech obiektów o różnych wartościach, z których obliczymy dwie funkcje równoliczne jest funkcją różnowartościową.
Funkcja różnowartościowa f : 1(x, y) = [ f : (1), f : (x), f : (y) ],
2. Funkcje równoliczne obliczone z funkcji różnowartościowej f : 1(x, y)  to f : [ (1x) ~ (1 y)]  możemy także zapisać f : 1 (x ~ y). Ponieważ :
ich wspólnym elementem jest pierwszy obiekt, któremu zawsze przypisujemy liczbę porządkową liczby kardynalnej.
3. Każda funkcja równoliczna obliczona z funkcji różnowartościowej jest funkcją, odwrotną, odwracalną i przeliczalną.
Dlatego możemy zapisać
Funkcja równoliczna f : (~)
Funkcja odwrotna f : ~ (1 / 2) to f : (1 / 2)
Np. funkcja odwracalna f : (1 / 3),
Np. funkcja przeliczalna f : (3 /4 na 3 /5)   
 ==============================================================================================================================,,
Zgodnie z definicją: Tylko jedna z dwóch funkcji równolicznych funkcji różnowartościowej należy do dziedziny.
Potwierdzeniem definicji są działania na pierwszym i drugim oraz pierwszym i trzecim obiekcie f : (~) obliczonych z funkcji różnowartościowej  f : 1 (y ~ z )
Funkcja odwracalna, pojęcie odwracalności f : (~) dotyczy dwóch przedziałów liczbowych zbioru przeliczalnego {{{<1/2>}), ({<1/3>, <1/4>,...,<2/9>}), ({3,4>, <3,5>,...,<8,9> }}} 
Funkcja odwrotna i odwracalna, względem funkcji równolicznej z której została obliczona będzie funkcją o różnych wartościach.
 
Graf układu liniowego [< 1 >]            Graf układu przeciwstawnego  [< 2 >] 
funkcje cykliczne                      funkcje cykliczne
f : (x)    |, |, |                              f : (x)    | X
f : (y)    `/ /,                               f : (y)    >|<
f : (z)    ,\ \`                               f : (z)    X |
[< 1 >]  Grafy układu liniowego  {< | | | >,  < ` / / , >,   < , \ \ `  > }      [< 2 >]   Grafy układu przeciwstawnego do liniowego  {< | X >,  <  >|< >,  < X |  > }
 
Przykład : Obliczania przypisanych wartości literowych funkcji cyklicznych  [ f : (x), f : (y), f : (z) ] funkcji równolicznej.
Spisujemy funkcje wzajemnie jednoznaczną z podstawą obliczeniową <1,2,3> i z funkcji cyklicznych dopełnienia f : (~) obliczamy.
a. Funkcje cykliczne zgodnie z funkcją zadaniową.
b. Graf cyklu, dla funkcji cyklicznej i układ cykliczny.
c. klucz,
d. Przyporządkowanie do Grupy podzbioru
f:~(1z) należy do f :{ Y }, i obiektu 2, (< f:~(1z,   4x,   5y)>), {Grupy A }, {{ bdA1}, { bd A }                                  działanie trzecie
<<<1,2)3>),(<4(5,6>>),(<9,7,8>>), (<<<1(4,9>>),(<2(6,7>>),(<3(5,8>>>), (<<<1(5,7>>),(<2(4,8>>),(<3(6,9>>>), (<<<1(6,8>>),(<2(5,9>>),(<3(4,7>>>>, <UL>,
 
funkcje cykliczne  [<4,9>, <5,7>, <6,8> ]             [<6,7>, <4,8>, <5,9> ]
................................|...........|..........| ........................|..........|...........|
f: j = ..................[ f :(x1), f :(x2), f :(x3)]                [ f :(y1),  f :(y2), f :(y3) ]   
obliczmy układ uporządkowanych cyfr w dwóch trójkach. Para funkcji cyklicznych powinna należeć do tej same Grupy podzbioru.
O przyporządkowaniu jej do Grupy decyduje druga i trzecia trójka etykiety funkcji równolicznej. f : (~) należy do < 4, 5, 6>.
Czyli do {< A >}
 
<<<1,2)3>),
(<4, 5, 6>>),                                                                                                 [<6, 4, 5> ]
(<9, 7, 8>>),            f : (z)    ,\ \`       Grupy {< A >} klucza [<1>]                [<7, 8, 9> ]      f : (y)    `/ /,       Grupy {< A >} klucza [<1>]
 
 

Podobne artykuły


13
komentarze: 2 | wyświetlenia: 23139
10
komentarze: 2 | wyświetlenia: 8279
17
komentarze: 1 | wyświetlenia: 10504
13
komentarze: 1 | wyświetlenia: 103481
13
komentarze: 3 | wyświetlenia: 3270
95
komentarze: 44 | wyświetlenia: 15389
10
komentarze: 2 | wyświetlenia: 56681
9
komentarze: 10 | wyświetlenia: 671
6
komentarze: 1 | wyświetlenia: 51530
32
komentarze: 68 | wyświetlenia: 12413
31
komentarze: 29 | wyświetlenia: 6103
30
komentarze: 7 | wyświetlenia: 83918
29
komentarze: 18 | wyświetlenia: 3970
27
komentarze: 6 | wyświetlenia: 5361
 
Autor
Artykuł



A gdyby tak zrobić rewers i policzyć wszystko od końca, to znaczy od chlewu do stodoły i dalej w pole ... zwykle, każdy liczy odwrotnie. Nie mniej ta funkcja odrwacalna mnie cieszy, bo dzięki niej jestem w stanie zobaczyc swój ogonek.



Dodaj swoją opinię
W trosce o jakość komentarzy wymagamy od użytkowników, aby zalogowali się przed dodaniem komentarza. Jeżeli nie posiadasz jeszcze swojego konta, zarejestruj się. To tylko chwila, a uzyskasz dostęp do dodatkowych możliwości!
 

© 2005-2018 grupa EIOBA. Wrocław, Polska