Login lub e-mail Hasło   

Rozszerzalność temperaturowa ciał

Odnośnik do oryginalnej publikacji: http://www.superfizyka.za.pl/
ROZSZERZALNOŚĆ LINIOWA Rozszerzalność temperaturowa ciał - definicja Rozszerzalnością temperaturową (cieplną, termiczną) ciał nazywamy zjawisko zmiany objętości...
Wyświetlenia: 21.850 Zamieszczono 19/05/2007

ROZSZERZALNOŚĆ LINIOWA

Rozszerzalność temperaturowa ciał - definicja
Rozszerzalnością temperaturową (cieplną, termiczną) ciał nazywamy zjawisko zmiany objętości ciał wraz ze zmianami temperatury. Powyższa definicja obejmuje całe pojęcie rozszerzalności temperaturowej, natomiast w tym podrozdziale zajmiemy się w szczególności rozszerzalnością liniową, która polega na zmianie długości ciała wraz ze zmianą temperatury.

Wprowadzamy teraz kilka oznaczeń: l0 - długość początkowa ciała w temperaturze t0, l - długość końcowa ciała w temperaturze t. Jeśli różnica temperatur Δt nie jest duża (kilkadziesiąt stopni) to można przyjąć, że przyrost długości Δl jest proporcjonalny do przyrostu temperatury i długości początkowej:

Δl = αl0ΔtPrzekształcając powyższe równianie możemy znaleźć wyrażanie określające długość końcową po ogrzaniu o Δt: l = l0(1+αΔt)

Współczynnik proporcjonalności α ze wzoru nosi nazwę średniego współczynnika rozszerzalności liniowej w granicach temperatur od t0 do t:

α = (l _ l0) / (l0Δt)

Ułamek ten oznacza o jaką część długości początkowej wzrasta średnio długość danego ciała po ogrzaniu o 1K w granicach temperatur od t0 do t. Jednostką średniego współczynnika rozszerzalności liniowej jest K _1

ROZSZERZALNOŚĆ OBJĘTOŚCIOWA

Zjawisko cieplnej rozszerzalności objętościowej występuje we wszystkich ciałach, niezależnie od ich stanu skupienia. W tym podrozdziale omówiona zostanie rozszerzalność objętościowa ciał stałych i cieczy. Rozszerzalność objętościową ciała w granicach temperatur t0 i t charakteryzuje wartość średniego współczynnika rozszerzalności objętościowej γ:

γ = (V _ V0) / (V0Δt) gdzie V0 oznacza objętość w temperaturze t0, V - objętość w temperaturze t.
Z powyższego równania wynika, że:

 

V = V0(1 + γΔt) Wartość średniego współczynnika rozszerzalności objętościowej wyraża, o jaką część objętości pierwotnej zwiększa się średnio objętość danego ciała przy wzroście temperatury o 1K w granicach temperatur od t0 do t

W przypadku ciał stałych jednorodnych i izotropowych istnieje określona zależność między wartościami współczynników α i γ. Weźmy pod uwagę sześcian o krawędzi l0 w temperaturze 0oC z materiału jednorodnego i izotropowego. Jego objętość początkowa:

V0 = l03 Po ogrzaniu do temperatury t, czyli o Δt, nowa długość krawędzi l będzie wynosiła: l = l0(1 + αΔt) a zatem objętość V po ogrzaniu: V = l03(1+αΔt) Pamiętajmy, że aktualna jest zależność:V = V0(1+Δt) Gdy porównamy prawe strony obu równań otrzymujemy V0(1+γΔt) = l03(1+3αΔt + 3α_2Δt2 + α_3Δt3) Uwzględniając, że V0 = l03 oraz zauważając, że wyrażenia z α_2 i α_3 są bardzo małe otrzymujemy przybliżoną zależność: γ ≈ 3α

Podobne artykuły


77
komentarze: 112 | wyświetlenia: 37160
16
komentarze: 17 | wyświetlenia: 89158
53
komentarze: 50 | wyświetlenia: 31998
47
komentarze: 32 | wyświetlenia: 147795
12
komentarze: 3 | wyświetlenia: 106807
10
komentarze: 0 | wyświetlenia: 41646
26
komentarze: 10 | wyświetlenia: 52228
24
komentarze: 10 | wyświetlenia: 32967
23
komentarze: 18 | wyświetlenia: 38334
23
komentarze: 10 | wyświetlenia: 18460
7
komentarze: 7 | wyświetlenia: 39600
22
komentarze: 11 | wyświetlenia: 32699
20
komentarze: 8 | wyświetlenia: 27728
 
Autor
Artykuł




Brak wiadomości


Dodaj swoją opinię
W trosce o jakość komentarzy wymagamy od użytkowników, aby zalogowali się przed dodaniem komentarza. Jeżeli nie posiadasz jeszcze swojego konta, zarejestruj się. To tylko chwila, a uzyskasz dostęp do dodatkowych możliwości!
 

© 2005-2018 grupa EIOBA. Wrocław, Polska