Login lub e-mail Hasło   

Matematycy, biografie

Odnośnik do oryginalnej publikacji: http://www.matematyka.i365.pl/index.php?(...)ematycy
Matematyk to jeden z najdawniejszych zawodów, znany już w starożytności. Matematyk to osoba, która posługuje się w swojej pracy dedukcyjną metodą myślenia, a to znaczy, że dąży do sformułowania praw ogólnych, czyli takich, które obowiązują zawsze i wszędzie.
Wyświetlenia: 17.456 Zamieszczono 10/09/2006

Matematyk to jeden z najdawniejszych zawodów, znany już w starożytności. Matematyk to nie tylko znawca nauki o liczbach i figurach geometrycznych, jak sądzono dawniej. Matematyk to osoba, która posługuje się w swojej pracy  dedukcyjną metodą myślenia, a to znaczy, że dąży do sformułowania praw ogólnych, czyli takich, które obowiązują zawsze i wszędzie.

A oto poniżej biografie niektórych z pośród znanych uczonych.

 

VI wiek p.n.e.

 


Tales z Miletu (ok. 627 - 546 p.n.e.)

     Tales urodził się w Milecie, stolicy starożytnej greckiej prowincji Jonia,
     nad morzem Egejskim. Jemu zawdzięczamy słynne powiedzenie:
     "Poznaj samego siebie!"   
     Uważany jest za jednego z "siedmiu mędrców" starożytności, był pierwszym, który
     ogłosił ogólne wyniki dotyczące obiektów matematycznych. Interesował się przede
     wszystkim figurami geometrycznymi: kołami prostymi i trójkątami. Dowiódł,
     że każdemu trójkątowi można przypisać okrąg: taki, który przechodzi przez trzy
     wierzchołki trójkąta i zaproponował ogólną zasadę konstrukcji.
    
     Tales był założycielem jońskiej szkoły filozofów przyrody. Brał aktywny
     udział w życiu politycznym i gospodarczym swego miasta. Utrzymywał
     ożywione stosunki handlowe z Egiptem, Fenicją i Babilonią.
     To było powodem, iż do krajów tych odbywał częste podróże.
     I prawdopodobnie wtedy zapoznał się z osiągnięciami matematyki i astronomii
     Egiptu i Babilonii.
    
     Gdy Tales wpatrywał się w niebo, by odkryć sekrety obrotów gwiazd, wpadł do dziury.
     Młoda służąca, która mu towarzyszyła powiedziała:
    
     "Nie widzisz tego, co masz pod nogami, a myślisz, że potrafisz zrozumieć,
co się dzieje na niebie!"

           
     Tales na owe czasy był wielkim astronomem, przewidział zaćmienie słońca na
     dzień 28 V 585 r. p.n.e. co przysporzyło mu sławy.
     Pomierzył równierz wysokość piramid za pomocą cienia, które one rzucały.
       
     Jednym z twierdzeń geometrii elementarnej, sformułowanej przez Talesa,
     jest twierdzenie zwane jego imieniem:
       
     Jeśli ramiona kąta przeciąć dwiema równoległymi, to długości odcinków
     wyznaczonych przez te proste na jednym ramieniu kąta są proporcjonalne
     do długości odpowiednich odcinków na drugim ramieniu kąta.
    
     Talesa można uznać za tego, który łącząc teorię z praktykę zbudował
     fundamenty geometrii jako nauki dedukcyjnej, której ukoronowaniem były
     Elementy Euklidesa.
    
     Charakterystyczne są poglądy filozoficzne Talesa. Zrywały one z
     panującą we wcześniejszych koncepcjach, dotyczących powstania
     wszechświata, mitologiczną interpretacją zjawisk przyrody. Tales za
     prapierwiastek rzeczywistości uważał wodę, która miała otaczać ze
     wszystkich stron płaski krąg Ziemi.    
    

     Twierdzenia geometryczne Talesa
  
     Zgodnie z przekazami starożytnych, a w szczególności greckiego filozofa Proklosa,
     żyjącego w V w. p.n.e., Talesowi przypisuje się następujące twierdzenia
     geometryczne:

     1. Średnica dzieli okrąg na połowy.

2. Dwa kąty przy podstawie trójkąta równoramiennego są równe.

3. Kąty wierzchołkowe, powstałe na skutek przecięcia
dwóch linii prostych są równe.

4. Kąt wpisany w okrąg i oparty na jego średnicy jest kątem prostym.

5. Jeżeli w dwóch trójkątach bok i przyległe do niego kąty są równe, to te
trójkąty są przystające.

 

Pitagoras z Samos (ok. 572 - 497 p.n.e.)

     Pitagoras urodził się na wyspie Samos położonej po środku
     Morza Egejskiego. Sporo podróżował. Spędził kilka lat w towarzystwie Talesa w
     pobliskiej Jonii. W Syrii przebywał pośród fenickich mędrców, stąd udał się do
     Egiptu, gdzie pozostał przez dwadzieścia lat. W świątyniach położonych nad
     Nilem zgłębiał wiedzę kapłanów egipskich.
     Kraj napadają jednak Persowie, a on dostaje się do niewoli i trafia do Babilonu.
     W ciągu dwunastu lat spędzonych w stolicy Mezopotamii przyswaja sobie
     olbrzymią wiedzę skrybów i mędrców babilońskich. Potem pełen mądrości i
     rozumu powraca na wyspę Samos, którą opuścił przed czterdziestu laty.
    
     Około 532 r. p.n.e. Pitagoras opuścił wyspę Samos, na której rządy sprawował
     tyran Polikrates. Wyemigrował do kolonii jońskich w Italii. Osiedlił się w
     Krotonie, gdzie założył związek pitagorejski.
     Tam też rozwinął przede wszystkim  działalność naukową. Zmarł w Metaponcie.
    
     Pitagoras sam żadnych pism nie zostawił. Późniejsi pitagorejczycy własne
     pomysły przypisywali założycielowi związku, w ten sposób
     stworzyli fikcyjną postać Pitagorasa jako twórcy tego, co było dziełem szeregu
     pokoleń i tak osnuli go legendą.
    
     Prąd filozoficzny, którego inicjatorem był Pitagoras, trwał ponad dwa wieki.
     Pitagorejczy cenili to, co mogło być dowiedzione na drodze rozumowej.
     W dziedzinie geometrii opracowali teorię równoległych wraz z
     twierdzeniem o sumie kątów trójkąta, czworokąta i wielokątów foremnych.
     Badali koło, wielościany foremne i kulę.

     W szkole pitagorejskiej narodziły się trzy wielkie problemy: podwojenie
     sześcianu, podział kąta na trzy równe części oraz kwadratura koła,
     które należało rozwiązać za pomocą cyrkla i linijki bez podziałki.
     
     Pitagorejczycy udowodnili twierdzenie samego Pitagorasa:
    
     W trójkącie prostokątnym, suma kwadratów przyprostokątnych jest równa
kwadratowi przeciwprostokątnej".

             
     Pitagorejczycy poza zagadnieniami z  zakresu geometrii interesowali się
     także teorią liczb. Zajmowali się także liczbami
     doskonałymi. Szukali także par liczb zaprzyjaźnionych zajmowali się
     proporcjami, lecz szczególnie dla dalszego rozwoju
     matematyki miało stwierdzenie istnienia odcinków niewspółmiernych.    
     Wokół tego odkrycia  narosło sporo legend. Stwierdzenie dotyczące
     istnienia odcinków niewspółmiernych (bok i przekątna kwadratu)
     wywołało - wskutek utrzymania tego odkrycia w tajemnicy - rozłam wśród
     pitagorejczyków. Odkrycie to ujawniło sprzeczności w systemie
     filozoficznym pitagorejczyków, według którego "wszystko jest liczbą",
     rozumianą jako liczba naturalna. Pitagorejczycy nie rozumieli liczby
     jako abstrakcji, lecz rozumieli ją jako przestrzenną wielkość, jako
     realny kształt. Liczba jest realną siłą w przyrodzie.


Hippiasz z Elidy (V - IV w. p.n.e.)

       
     Hippiasz z Elidy - grecki filozof, mówca, sofista, geometra.
    
     W 420 r. p.n.e. Hippiasz odkrył kwadratrysę. Kwadratrysa to
     krzywa płaska, powstająca jako miejsce przecięcia się prostych leżących na jednej
     płaszczyźnie, z których jedna obraca się ze stałą prędkością kątową, a druga
     przesuwa się ze stałą prędkością liniową. Za pomocą kwadratrysy można wykonać
     kwadraturę koła.

 


V wiek p.n.e.


Zenon z Elei (V w. p.n.e.)

     Zenon z Elei - filozof grecki, uczeń Parmenidesa, który należał do
     szkoły eleatów. Sformułował paradoksy związane z posługiwaniem się pojęciem
     nieskończoności i liczby. Zasłynął ze swoich paradoksów lub dowodów na niemożność
     istnienia wielości rzeczy i ruchu. Cztery jego dowody o niemożności ruchu
     znane są pod nazwami dychotomii, Achillesa, strzały i stadionu.
     Zobacz paradoksy
    
     Zenon z Elei posługując się wyszukanymi argumentami rozumowymi bronił tezy o
     niezmienności i niepodzielności bytu. Paradoksy, które sformułował, miały
     dowodzić, ze ruch nie istnieje. Przeciwko wielości rzeczy wysuwał twierdzenie, ze
     nie można w nieskończoność dzielić czegoś, bo uzyska się w końcu części nie
     posiadające wymiarów, a suma części bez wymiarów musi być równa zeru.
    
     Paradoksy Zenona z Elei były rozważane przez najwybitniejszych filozofów, a
     doczekały się naukowego rozwiązania dopiero dzięki badaniom nad pojęciem
     ciągłości.


Hipokrates z Chios (V w. p.n.e.)

      
     Hipokrates z Chios swoje dorosłe życie rozpoczął od zajmowania się handlem morskim,
     jednak podczas jednej z podróży, poborcy z Bizancjum ograbili go ze wszystkich
     pieniedzy.
     Doszczętnie zrujnowany zajął się matematyką. Wstąpił do szkoły pitagorejskiej,
     gdzie został matematykiem. To on wymyślił
     rozumowanie poprzez sprowadzanie do absurdu!. Rozumowanie takie pozwala
     ustalić prawdziwość twierdzenia, udowadniając, że twierdzenie przeciwne prowadzi
     do absurdu.

     Hipokrates z Chios rozpatrywał sierpy księżyca i wykonał kwadraturę księżyców.
     Była to pierwsza kwadratura figury krzywoliniowej.

     Sprowadził rozwiązanie problemu podwojenia sześcianu (problem delijski)
     do znalezienia podwójnej średniej proporcjonalnej takich dwóch
     liczb x i y, że dla dowolnych liczb a i b
     zachodzi: (a/x) = (y/x) = (y/b)
    
     Hipokrates z Chios był autorem pierwszego podręcznika z geometrii -
     Stoicheia czyli Elementy. Dzieło to jednak zaginęło.
         
     W latach ok. 450 - 420 p.n.e. działał w Atenach, gdzie
     otworzył szkołę geometrii. Nauczał w niej za opłatą za co został wygnany ze
     szkoły pitagorejskiej.

 

IV wiek p.n.e.

     
Platon (427 - 347 p.n.e.)
 
     Platon - filozof grecki, zainteresowania filozoficzne zawdzięczał
     dziewięcioletniemu obcowaniu z Sokratesem. Po śmierci Sokratesa odbył liczne
     podróże. Podczas podróży poznał wiele poglądów, w tym doktryny orfickie i
     pitagorejskie o wędrówce duszy, o uwięzieniu duszy w ciele, o dążności do
     najwyższej idei dobra.
      
     Po powrocie do Aten, w gaju poświęconym Akademosowi założył szkołę,
     którą kierował przez 42 lata. Była ona zorganizowana na wzór pitagorejski i miała
     zarówno charakter naukowy, jak i religijny.
     Rozwijano w niej kult Muz i prowadzono działalność naukowo-dydaktyczną w zakresie
     filozofii, polityki, matematyki, astronomii, nauk przyrodniczych.     
     Akademia Platońska istniała ponad 900 lat, aż do 529 n.e., zamknięta z rozkazu
     Justyniana I Wielkiego. Stanowiła wzorzec dla podobnych instytucji w starożytności,
     m.in. Arystotelesowskiego Likejonu oraz szkół stoickich i epikurejskich.
    

Euklides

     Okres działalności Euklidesa przypada na lata panowania Ptolemeusza Sotera I (305-282 p.n.
     e.). Imię Euklidesa związało się na zawsze z jedną z gałęzi geometrii -
     zwanej geometrią euklidesową. Euklides znany jest jako autor
     "Elementów". Przez kilkanaście wieków na całym świecie uczono geometrii
     według "Elementów" Euklidesa. Dzieło to składa się z trzynastu ksiąg.
     Księgi czternasta i piętnasta są późniejszymi uzupełnieniami. Autorem
     czternastej jest Hipsikles z Aleksandrii (około 200 r. p.n.e.), a
     piętnastą dołączono dopiero w szóstym wieku naszej ery.     
     
     Euklides był jednym z pierwszych wykładowców słynnej wówczas Szkoły
     Aleksandryjskiej. Przypuszcza się, że był wychowankiem Akademii
     Platońskiej, gdzie posiadł głęboką wiedzę mając dostęp do najlepszych
     prac matematyków i filozofów greckich. Przemawia za tym między innymi
     cecha "Elementów" - skrupulatne, tak charakterystyczne dla Platona i
     jego zwolenników, omijanie wszelkich zagadnień mających związek z
     praktyką.
    
     Z Euklidesem związane są dwie anegdoty. Według jednej z nich król
     Ptolemeusz I przeglądając "Elementy" zapytał autora, czy nie ma
     krótszych dróg wiodących do geometrii, na co Euklides odrzekł: "W
     geometrii nie ma nawet specjalnych dróg dla królów". Inna anegdota mówi
     że, młodzieniec studiujący geometrię pod kierunkiem Euklidesa miał
     zadać mistrzowi pytanie, co daje studiowanie geometrii. W odpowiedzi
     miał się Euklides zwrócić do swego niewolnika tymi słowami:
     Daj mu obola ponieważ, musi on mieć zysk z wszystkiego, czego uczy
     się.
    
     W "Elementach" mających charakter podręcznika, Euklides zawarł całą
     wiedzę matematyczną swoich poprzedników. Pierwsze cztery księgi i
     szósta dotyczą geometrii płaskiej, ostatnie trzy - przestrzennej,
     których ukoronowaniem są rozważania o pięciu wielościanach foremnych.
     Piąta poświęcona jest teorii proporcji w ujęciu geometrycznym. Treść
     księgi siódmej, ósmej i dziewiątej jest arytmetyczna. Autor wykłada w
     nich arytmetykę pitagorejską, a więc właściwie teorię liczb, lecz w
     sposób naukowy, bez cienia pitagorejskiej mistyki. 
     W dziele swoim urzeczywistnił Euklides wzór nauki dedukcyjnej, której
     twierdzenia, jeśli pominąć nieznaczne usterki, wyprowadzane są na
     drodze czysto logicznej z układu określeń, postulatów i aksjomatów.
    

     Najbardziej znanym twierdzeniem, zwanym twierdzeniem Euklidesa jest:
    
     Twierdzenie Euklidesa    
    
     Pole kwadratu zbudowanego na wysokości trójkąta
     prostokątnego poprowadzonej z wierzchołka kąta prostego jest równe polu
     prostokąta o bokach równym odcinkom, na które ta wysokość podzieliła
     przeciwprostokątną

    
     Euklides był najwybitniejszym dydaktykiem, jakiego znała ówczesna
     historia matematyki. Jego wspaniała praca "Elementy", to jedno z
     najbardziej popularnych i rozpowszechnionych dzieł w literaturze
     światowej.

 

 
Archimedes

Archimedes w Syrakuzach. Pochodził z rodziny o tradycjach naukowych. Ojciec jego był astronomem. Początkowe nauki pobierał u swego ojca Fidiasza. Przez pewien czas studiował również w słynnej już wtedy Aleksandrii. Tam zetknął się z wybitnymi uczonymi, z którymi przez całe życie utrzymywał ożywione stosunki. Do nich należał także ówczesny kierownik Biblioteki Aleksandryjskiej, Eratostenes. Przypuszcza się - przynajmniej tak uważa kilku historyków nauki - iż Archimedes współdziałał z Eratostenesem przy obliczaniu długości obwodu kuli ziemskiej
    
Część jego dzieł zachowała się. Wiadomo również, że Heraklidos napisał jego biografię, która jednak zaginęła. Dzieła tego uczonego były mniej rozpowszechnione niż "Elementy" Euklidesa - przede wszystkim z powodu trudniejszej treści i małej przystępności wykładu. Dzieła jego są nadzwyczaj trudne; pisał stylem oszczędnym, opuszczał łatwe w swoim mniemaniu ogniwa, liczył zapewne na naukową dojrzałość czytelnika. Ci, którzy jak np. Plutarch wychwalali jasność wykładu Archimedesa, widocznie żadnej jego książki nie mieli w ręku, natomiast dużej miary matematyk francuski Franciszek Viète przyznawał, że nie wszystko rozumiał. Mimo to wywarł Archimedes ogromny wpływ na rozwój matematyki. Tłumaczyli go gorliwie i komentowali Arabowie, później uczeni zachodnioeuropejscy.
    
Archimedes jest autorem szeregu niezwykle głębokich i oryginalnych prac z dziedziny matematyki i tym różni się od Euklidesa, który zasłynął raczej jako systematyk przed nim stworzonej wiedzy. Prace Archimedesa dotyczą obliczania objętości pól figur, ograniczonych krzywymi i objętości brył, ograniczonych dowolnymi powierzchniami, czym wsławił się jako prekursor rachunku całkowego, powstałego w dwa tysiące lat później dzięki takim geniuszom jak Leibniz i Newton. Archimedes uważał  za najważniejsze swoje odkrycie podobno dowód, że stosunek objętości kuli do objętości opisanego na niej walca wyraża się stosunkiem liczb 2:3,  i prosił przyjaciół o umieszczenie tego na nagrobku. Uzyskał najlepsze z dotychczasowych wyniki związane z tradycyjnym problemem kwadratury koła:
Archimedes    
    
Pole powierzchni koła jest równe polu trójkąta prostokątnego o przyprostokątnych równych obwodowi i promieniowi koła.
Pole koła ma się do pola opisanego na nim kwadratu jak 11:14.
Stosunek obwodu koła do jego średnicy jest zawarty między liczbami  310/71 i 310/70.

      Wymienione zagadnienia stanowią tylko drobną część twórczości Archimedesa. Na podstawie zachowanych licznych informacji biograficznych, których ścisłość jest jednak wątpliwa, można wyobrazić sobie pogląd o Archimedesie jako o człowieku i uczonym. W ich świetle przypomina on poniekąd przysłowiowego "roztargnionego profesora". Legenda głosi, że znalazł sposób ustalenia zawartości złota w koronie króla Syrakuz Herona w czasie kąpieli, gdy zauważył, że woda zaczęła wyciekać, gdy wszedł do wanny. Wówczas nago pobiegł do domu z okrzykiem: eureka - znalazłem. Przypisywane mu zdanie: "dajcie mi punkt oparcia, a poruszę ziemię" - wiąże się zapewne ze zdarzeniem, gdy na polecenie króla zbudowana została wspaniała łódź, a robotnicy nie mogli jej spuścić na wodę. Pomógł w tym Archimedes i przy pomocy sporządzonego systemu bloków jeden człowiek, mianowicie sam król, uporał się z tą pracą.

Plutarch wysławia Archimedesa za jego udział w obronie rodzinnych Syrakuz przed Rzymianami. Przy pomocy zaprojektowanych przez  uczonego katapult oblegani razili wrogów wielkimi głazami i ołowiem, a przy pomocy żurawi unosili i zatapiali wrogie okręty. Te i podobne podania zdają się świadczyć o zerwaniu z platońską tradycją pełnej izolacji nauki od praktyki, chociaż nie zachowała się, a może nie powstała żadna Archimedesowska praca z zakresu zastosowań matematyki.

Zginął w 212 r. p.n.e. z rąk rzymskiego żołdaka po upadku miasta, w czasie pracy naukowej. Podobno w ostatnich słowach prosił swego zabójcę, by nie niszczył rysunku, nad którym rozmyślał. W blisko sto lat później Cyceron odnalazł jego grób, który poznał po wyrytej na nagrobku kuli z opisanym na niej walcem.

Mimo iż od śmierci Archimedesa upłynęło ponad dwa tysiące lat na firmamencie nauki jest to gwiazda pierwszej wielkości.

 


Heron z Aleksandrii (około 80 r. p.n.e.)

     Głównym jego dziełem jest składająca się z trzech ksiąg "Metrica" (
     nauka o mierzeniu). Pierwsza księga obejmuje mierzenie powierzchni. Tu
     podany jest słynny wzór Herona na pole trójkąta wraz z bardzo
     przejrzystym dowodem oraz różne przykłady liczbowe, wymagające
     znalezienia pierwiastków kwadratowych z liczb wymiernych, co wykonuje w
     oparciu o babilońskie metody przybliżone. Pierwszą księgę kończą
     rozważania o przybliżonym obliczaniu pól płaskich ograniczonych
     krzywymi, a także powierzchni "nieprawidłowych". Druga księga obejmuje 
     zagadnienia obliczania objętości i kończy się informacją, że Archimedes
     mierzył objętość "nieprawidłowych" brył przez zanurzenie ich w płynie i
     obliczanie objętości wypartej cieczy. Ostatnia księga zawiera problemy
     dzielenia figur płaskich i przestrzennych na części pozostające do
     siebie w danym stosunku liczbowym. Autor nawiązuje to do prac Euklidesa,
     Apolloniusza i Archimedesa, wnosi jednak szereg oryginalnych myśli,
     podaje również przybliżony sposób obliczania pierwiastków trzeciego
     stopnia.
     

     Wzór Herona
     Heron jest również autorem "Geometrici". Jest ona pod względem treści
     podobna do "Metrici", lecz wyłożona w zupełnie elementarnej formie.
     Wzory nie są tu wyprowadzone, lecz ilustrowane licznymi przykładami.
     Dzieło to nawiązuje do staroegipskiej i starobabilońskiej spuścizny.
     Dobór zagadnień, używane zwroty i rysunki zdaniem niektórych historyków
     przypominają papirus Achmesa z około dwóch tysięcy lat p.n.e.     
    

     Prace Herona z dziedziny mechaniki stosowanej i optyki stawiają go
     również w rzędzie nauczycieli tych dyscyplin i mają duże znaczenie dla
     historii nauk przyrodniczych. Osobliwością zachowanej jego rozprawy o
     pneumatyce jest szereg zawartych w niej pomysłowych "czarodziejskich
     sztuczek". Heron jest również autorem mechanizmu do automatycznego
     otwierania drzwi świątyń na skutek zapalania ofiarnego ognia na ołtarzu.
     Jako matematyk nie był Heron twórczy, dokonał jednak w matematyce
     doniosłej przemiany: związał ją z potrzebami człowieka i sprowadził ze
     świata platońskich idei na ziemię.

Kopiowanie tylko za zgodą autora. Wszelkie prawa zastrzeżone. 

Podobne artykuły


10
komentarze: 2 | wyświetlenia: 687
10
komentarze: 55 | wyświetlenia: 1013
10
komentarze: 14 | wyświetlenia: 1105
10
komentarze: 1 | wyświetlenia: 1384
6
komentarze: 55 | wyświetlenia: 1070
5
komentarze: 60 | wyświetlenia: 545
124
komentarze: 52 | wyświetlenia: 141218
118
komentarze: 23 | wyświetlenia: 236289
91
komentarze: 20 | wyświetlenia: 109492
90
komentarze: 29 | wyświetlenia: 121737
 
Autor
Dodał do zasobów: matematyk
Artykuł



  oldml,  02/02/2008

Słabiutkie opracowanie. Tytuł wskazuje na wiele więcej.
Ponadto definicja:
"Matematyk to osoba, która posługuje się w swojej pracy dedukcyjną metodą myślenia, a to znaczy, że dąży do sformułowania praw ogólnych, czyli takich, które obowiązują zawsze i wszędzie."
jest utopijna. Teorie matematyczne zmieniają się od wieków, czy oznacza to, że nie ma matematyków?

Zgodzę się z Tobą Marku. Jest tyle ciekawych historii związanych z tym, jak to niektórzy dochodzili do swoich teorii. Można by je tutaj umieścić...

Dedukcja jest działaniem logicznym odwrotnym, nie dochodzi się do ogółu, lecz od ogółu do szczegółu. To indukcja to droga wnioskowania matematycznego od szczegółu do ogółu. Ale matematyce korzystają z tych obu metod. Tylko Sherlock Holmes stosował jedynie dedukcję.



Dodaj swoją opinię
W trosce o jakość komentarzy wymagamy od użytkowników, aby zalogowali się przed dodaniem komentarza. Jeżeli nie posiadasz jeszcze swojego konta, zarejestruj się. To tylko chwila, a uzyskasz dostęp do dodatkowych możliwości!
 

© 2005-2018 grupa EIOBA. Wrocław, Polska